本文對(duì)鋰離子
電池正極材料生產(chǎn)制備技術(shù)的發(fā)展歷史進(jìn)行了回顧,對(duì)鋰離子
電池正極材料的發(fā)展方向進(jìn)行了分析。上世紀(jì)末,從鋰離子電池正極材料加工性能和電池性能的角度出發(fā),清華大學(xué)研究團(tuán)隊(duì)提出了控制結(jié)晶制備高密度球形前驅(qū)體的技術(shù),結(jié)合后續(xù)固相燒結(jié)工藝,提出了制備含鋰電極材料的產(chǎn)業(yè)技術(shù)。
其中,控制結(jié)晶方法制備前驅(qū)體,可以在晶胞結(jié)構(gòu)、一次顆粒組成與形貌、二次顆粒粒度與形貌,以及顆粒表面化學(xué)四個(gè)層面對(duì)材料的性能進(jìn)行調(diào)控與優(yōu)化。利用該技術(shù)工藝生產(chǎn)的材料具有顆粒粒度及形貌易控制、均勻性好、批次一致性和穩(wěn)定性好的特點(diǎn),可以同時(shí)滿足電池對(duì)于材料電化學(xué)性能和加工性能的綜合要求。因材料的堆積密度高,尤其適用于高比能量電池。
該技術(shù)工藝適用于多種正極材料,并適合于大規(guī)模生產(chǎn),隨著時(shí)間的推移,逐步被證明是鋰離子電池正極材料的最佳生產(chǎn)技術(shù)工藝,得到了現(xiàn)今產(chǎn)業(yè)界的普遍接受和認(rèn)可。這也是我國科學(xué)工作者對(duì)國際鋰離子電池產(chǎn)業(yè)做出的重要貢獻(xiàn)之一。
鋰離子電池具有比能量高、儲(chǔ)能效率高和壽命長(zhǎng)等優(yōu)點(diǎn),近年來逐步占據(jù)電動(dòng)汽車、儲(chǔ)能系統(tǒng)以及移動(dòng)電子設(shè)備的主要市場(chǎng)份額。從1990年日本Sony公司率先實(shí)現(xiàn)鋰離子電池商業(yè)化至今,負(fù)極材料一直是碳基材料,而正極材料則有了長(zhǎng)足的發(fā)展,是推動(dòng)鋰離子電池性能提升的最關(guān)鍵材料。
鋰離子電池正極材料的研究與發(fā)展,主要在三個(gè)方面進(jìn)行:1)基礎(chǔ)科學(xué)層面,主要是發(fā)現(xiàn)新材料,或者對(duì)材料組成、晶體結(jié)構(gòu)及缺陷結(jié)構(gòu)的計(jì)算、設(shè)計(jì)與合成探索,以期發(fā)現(xiàn)電化學(xué)性能優(yōu)異的新型正極材料;2)材料化學(xué)層面,主要探討合成技術(shù),以期對(duì)材料晶體結(jié)構(gòu)、取向、顆粒形貌、界面等材料結(jié)構(gòu)因子進(jìn)行優(yōu)化,獲得電化學(xué)性能、加工性能和電池性能的最佳匹配,目的是研發(fā)可實(shí)現(xiàn)正極材料綜合性能最優(yōu)化的材料結(jié)構(gòu)及其合成方法;3)材料工程技術(shù)層面,主要是發(fā)展可大規(guī)模、低成本、穩(wěn)定的設(shè)備與工藝,以期發(fā)展合理的工程技術(shù),滿足市場(chǎng)需求。
鋰離子電池正極材料要在全電池中發(fā)揮最優(yōu)良的性能,需要在材料組成優(yōu)化的前提下,進(jìn)一步優(yōu)化材料的晶體結(jié)構(gòu)、顆粒結(jié)構(gòu)與形貌、顆粒表面化學(xué)、材料堆積密度和壓實(shí)密度等物理化學(xué)性質(zhì),同時(shí)還需要嚴(yán)防工藝過程引入微量金屬雜質(zhì)。當(dāng)然,穩(wěn)定、高質(zhì)量的大規(guī)模生產(chǎn)是材料在電池制造中性能穩(wěn)定的重要的保障。隨著鋰電技術(shù)的日臻完善和鋰電市場(chǎng)的日趨成熟,不同正極材料的應(yīng)用領(lǐng)域逐漸出現(xiàn)劃分,即鋰離子電池對(duì)于各種正極材料的性能要求也不盡相同。因而,正極材料的主流合成技術(shù)與工藝也經(jīng)歷了不同的發(fā)展路徑。
1. 鋰離子電池對(duì)正極材料的性能要求
(1)產(chǎn)業(yè)對(duì)鋰離子電池的性能要求
要理解正極材料的技術(shù)指標(biāo),需要首先從電池的技術(shù)指標(biāo)說起。鋰離子電池產(chǎn)業(yè)初期,主要服務(wù)于移動(dòng)電子產(chǎn)品的發(fā)展,例如筆記本電腦、平板電腦、移動(dòng)智能終端(手機(jī))等。近年來,新能源產(chǎn)業(yè)和
電動(dòng)車產(chǎn)業(yè)迅速崛起,對(duì)鋰離子電池的需求急速增長(zhǎng),刺激鋰電產(chǎn)業(yè)加快了發(fā)展速度。因此,鋰離子電池需滿足諸多技術(shù)性能指標(biāo),才能被產(chǎn)業(yè)認(rèn)可、得到進(jìn)一步的發(fā)展。
這些技術(shù)指標(biāo)中,最基本的有比能量、循環(huán)穩(wěn)定性、比功率、成本、安全性可靠性、耐用性能、生產(chǎn)制造效率、可持續(xù)性等等,指標(biāo)之間相互關(guān)聯(lián),不同的應(yīng)用領(lǐng)域?qū)︿囯x子電池指標(biāo)的優(yōu)先考慮順序是不同的。與便攜式電子產(chǎn)品中的鋰離子電池相比,儲(chǔ)能與電動(dòng)車產(chǎn)業(yè)中應(yīng)用的鋰離子電池的最大不同是單體電池的容量增長(zhǎng)為十倍甚至幾十倍,同時(shí)電池模組的功能、結(jié)構(gòu)及應(yīng)用的復(fù)雜程度顯著提高,這對(duì)鋰離子電池的一致性、可靠性提出了更高的要求。
基于20多年的研究和工程實(shí)踐經(jīng)驗(yàn),認(rèn)為鋰離子電池的技術(shù)指標(biāo)中最重要的是比能量和循環(huán)性能,其次是比功率、安全性、可靠性、成本和一致性等性能指標(biāo)。比能量越高,單位能量(Wh)的材料成本就下降;循環(huán)壽命越長(zhǎng),電池的實(shí)際使用成本就低。目前移動(dòng)智能終端用鋰離子電池需要滿足比能量700 Wh/L以上、循環(huán)性能200次以上的要求,而電動(dòng)車用鋰離子電池需要滿足比能量140 Wh/kg(磷酸鐵鋰或者錳酸鋰正極材料)或200 Wh/kg(層狀氧化物正極材料)以上、循環(huán)性能1500次以上的要求。鋰離子電池正極材料需滿足上述電池指標(biāo)才可能被電池主流市場(chǎng)所接受。而目前鋰離子電池的比能量和循環(huán)性能主要取決于正極材料[1-6],因而鋰離子電池正極材料的主要研發(fā)目標(biāo)就是高比能量、長(zhǎng)循環(huán)壽命。
對(duì)于筆記本電腦、平板電腦、移動(dòng)智能終端用鋰離子電池,體積比能量是最重要的指標(biāo),當(dāng)然體積比能量高的電池,通常質(zhì)量比能量也會(huì)高。因?yàn)榭蛻粝M谔囟w積的設(shè)備(例如手機(jī))中放進(jìn)更多的電池能量,目前石墨|鈷酸鋰體系的鋰離子電池產(chǎn)業(yè)化最成熟、同時(shí)高體積比能量也最高,其它材料體系的鋰離子電池很難撼動(dòng)該體系鋰離子電池在移動(dòng)電子產(chǎn)品行業(yè)的主導(dǎo)地位。安全性、可靠性和一定的循環(huán)性能對(duì)該類電池也很重要,由于主要以單體方式應(yīng)用,電池的一致性和成本就不那么重要了。
對(duì)于電動(dòng)車用鋰離子電池,盡管其對(duì)體積比能量的要求不像便攜式電子產(chǎn)品電池那樣苛刻,但畢竟乘用車的空間有限,車體重量會(huì)影響電動(dòng)車的行駛里程,因此電池的質(zhì)量比能量和體積比能量仍然是非常重要的。除此之外,車用鋰離子電池幾乎對(duì)其他所有性能的要求都近乎苛刻,遠(yuǎn)遠(yuǎn)高于便攜式電子產(chǎn)品電池的性能要求。其與便攜式電子產(chǎn)品電池最大的區(qū)別有三個(gè)。
一是電動(dòng)車電源需要較高的電壓和電流,需要大量單體電池進(jìn)行串并聯(lián)組合,這使得電池組實(shí)際可以利用的比能量不僅取決于單體電池的比能量,還取決于單體電池的一致性、特別是動(dòng)態(tài)一致性,動(dòng)力電池的一致性近年來逐漸得到人們的關(guān)注[7]。二是單體電池的規(guī)模顯著增大,這使得單體電池的價(jià)格較高,熱失控造成的危害較為嚴(yán)重,因此市場(chǎng)對(duì)電池的安全性和可靠性較為敏感。三是由于電動(dòng)車需要10-15年的使用壽命,因此對(duì)循環(huán)性能的要求很高,一般需要1500次以上。此外,由于電動(dòng)車需要啟動(dòng)和加速,因此動(dòng)力電池對(duì)比功率也有一定的要求。
隨著電動(dòng)汽車產(chǎn)業(yè)的迅速發(fā)展,動(dòng)力鋰離子電池未來將與便攜式電子產(chǎn)品電池一并成為鋰電產(chǎn)業(yè)的主流產(chǎn)品。比能量和循環(huán)性能是鋰離子電池技術(shù)發(fā)展中永遠(yuǎn)追求的最重要的性能指標(biāo),隨著安全性、可靠性、比功率和一致性等日益受到關(guān)注,該方面的技術(shù)有望獲得快速發(fā)展。需要說明的是,隨著鋰離子電池逐漸滲入到國民經(jīng)濟(jì)的各個(gè)領(lǐng)域,會(huì)有越來越多的非主流的鋰離子電池細(xì)分市場(chǎng),其對(duì)電池的性能指標(biāo)要求比較特殊,不在本文的討論范圍。
(2)滿足主流鋰離子電池產(chǎn)業(yè)需求的正極材料
當(dāng)前,滿足鋰離子電池主流市場(chǎng)對(duì)電池性能要求的正極材料主要有層狀鈷酸鋰LiCoO2材料(LCO)、尖晶石錳酸鋰LiMn2O4材料(LMO)、橄欖石磷酸鐵鋰LiFePO4材料(LFP)、橄欖石磷酸錳鐵鋰LiMn0.8Fe0.2PO4材料(LMFP)、層狀三元材料LiNi1/3Mn1/3Co1/3O2材料(NMC333)、層狀三元材料LiNi0.4Mn0.4Co0.2O2(NMC442)、LiNi0.5Mn0.3Co0.2O2(NMC532)、LiNi0.6Mn0.2Co0.2O2(NMC622)、LiNi0.7Mn0.2Co0.1O2(NMC721)、LiNi0.8Mn0.1Co0.1O2(NMC811)和層狀高鎳材料LiNi0.8Co0.15Al0.05O2(NCA)等。從產(chǎn)業(yè)應(yīng)用的角度,上述各材料因具有不同的物理化學(xué)特點(diǎn),適合于不同應(yīng)用領(lǐng)域的鋰離子電池,因而材料產(chǎn)品的關(guān)鍵性能指標(biāo)也有所差異。
鈷酸鋰LiCoO2(LCO)材料是目前壓實(shí)密度最高的正極材料,因此所制備的鋰離子電池體積比能量最高,成為平板電腦和移動(dòng)智能終端用鋰離子電池的主要正極材料。其缺點(diǎn)主要是鈷資源有限、成本高,限制了其在電動(dòng)車領(lǐng)域的廣泛應(yīng)用。該材料的結(jié)構(gòu)與反應(yīng)特性是隨著充電電壓的逐漸升高,鋰脫出量逐漸增加,LCO的可利用容量逐漸提高,但當(dāng)鋰脫出量超過55%時(shí)(即相對(duì)于金屬鋰的充電電位為4.25V、相對(duì)于石墨|LCO全電池的充電電壓為4.2V),材料的結(jié)構(gòu)穩(wěn)定性迅速下降,壽命及安全性迅速變差。因此耐受較高充電電壓、同時(shí)化學(xué)穩(wěn)定性滿足電池應(yīng)用需求的LCO正極材料是當(dāng)前材料制備技術(shù)的主要發(fā)展方向。
LCO結(jié)構(gòu)穩(wěn)定、合成較為容易,其制備技術(shù)簡(jiǎn)單,也相對(duì)最為成熟。在2000年之前,LCO主要通過氧化鈷/碳酸鋰混合物的固相燒結(jié)技術(shù)進(jìn)行生產(chǎn),隨著人們對(duì)于產(chǎn)品堆積密度、比表改性等的極致追求,控制結(jié)晶制備鈷酸鋰前驅(qū)體的方法因具有材料形貌控制的優(yōu)勢(shì)而逐漸成為主要的產(chǎn)業(yè)制備技術(shù)[8-11]。
尖晶石錳酸鋰LiMn2O4(LMO)材料的主要優(yōu)點(diǎn)是原料資源豐富、成本低、電池安全性好;其公認(rèn)的主要缺點(diǎn)是電池比能量低,同時(shí)循環(huán)穩(wěn)定性欠佳。上世紀(jì)90年代開始,受其原料及工藝成本低、安全性好的吸引,人們探索了LMO在電動(dòng)大巴、乘用轎車、特種車輛、電動(dòng)工具等領(lǐng)域的應(yīng)用。傳統(tǒng)的固相燒結(jié)制備技術(shù)無法實(shí)現(xiàn)對(duì)材料結(jié)構(gòu)的調(diào)控,為了改善其循環(huán)穩(wěn)定性及材料的振實(shí)密度,2004年作者團(tuán)隊(duì)引入液相工藝制備前驅(qū)體[12-14],并進(jìn)一步通過表面包覆、晶格摻雜、表面梯度化等技術(shù)提升材料性能[15-22]。但受限于材料溶解性高的特點(diǎn),電池的循環(huán)穩(wěn)定性一直未能很好得到滿足,只有進(jìn)一步配合電解液,電池的壽命才能滿足需求。目前,LMO雖然已經(jīng)很少用于車用動(dòng)力電池,但在對(duì)成本較為敏感的電動(dòng)自行車等小型動(dòng)力電池行業(yè)得到了廣泛的應(yīng)用。此外,隨著人們對(duì)車用大型動(dòng)力電池安全性的關(guān)注,與三元材料共混使用也成為L(zhǎng)MO材料的主要用途之一。
橄欖石磷酸鐵鋰LiFePO4(LFP)材料的主要優(yōu)點(diǎn)是原料資源豐富、成本低、電池安全性和循環(huán)性能好,其主要缺點(diǎn)是電池比能量低。該材料不僅在電動(dòng)自行車、電動(dòng)大巴、電動(dòng)公交車、特種車行業(yè)得到了廣泛應(yīng)用,而且在大規(guī)模儲(chǔ)能行業(yè)得到了廣泛的應(yīng)用。由于該材料中鋰離子沿一維通道傳輸,因此材料具有顯著的各向異性、對(duì)缺陷結(jié)構(gòu)異常敏感,需要制備過程保障合成反應(yīng)的高度均勻性和精確的Fe:P比例,才可能獲得較好的容量和倍率性能。基于材料結(jié)構(gòu)和合成反應(yīng)的復(fù)雜性,該材料的制備主要有兩個(gè)難題:
一是過程需要還原氣氛,反應(yīng)原料因種類、粒度不同而對(duì)還原氣氛具有不同的要求,局部還原性過高或者過低都會(huì)導(dǎo)致產(chǎn)品中存留雜質(zhì);二是材料需要進(jìn)行表面碳包覆或者與其他類型的導(dǎo)電劑進(jìn)行復(fù)合,這使得材料的雜質(zhì)和壓實(shí)密度很難控制。2005年作者所在課題組提出利用控制結(jié)晶技術(shù)制備高性能磷酸鐵前驅(qū)體(FP),再與鋰源和碳源一起通過碳熱還原制備LFP[11]。
上述工藝路線經(jīng)過進(jìn)一步的改進(jìn)成為了目前主流的磷酸鐵鋰材料制備技術(shù)[23-29]。為了滿足人們對(duì)LFP電池性能的不斷追求,高均勻性、高批次穩(wěn)定性成為L(zhǎng)FP正極材料最受關(guān)注的產(chǎn)品指標(biāo),而傳統(tǒng)的固相燒結(jié)技術(shù)一方面在原理上就難以實(shí)現(xiàn)高效的一致性控制,另一方面一致性控制會(huì)導(dǎo)致工藝成本的顯著提高。與固相工藝相比,基于液相工藝制備的前驅(qū)體或者基于水熱/溶劑熱制備的正極材料,具有較好的結(jié)構(gòu)可調(diào)性和可控性[30],同時(shí)批次穩(wěn)定性及反應(yīng)均勻性好。類似于大化工裝置,連續(xù)溶劑熱工藝容易實(shí)現(xiàn)超大規(guī)模生產(chǎn)。因此液相技術(shù)逐漸成為下一代高品質(zhì)LFP正極材料制備技術(shù)的發(fā)展趨勢(shì)[31-37]。
橄欖石磷酸錳鐵鋰LiMn0.8Fe0.2PO4(LMFP)材料是LFP材料的升級(jí)版,比能量比LFP高10%;由于Mn和Fe原料的反應(yīng)動(dòng)力學(xué)和對(duì)還原氣氛的要求存在差異,該材料的主要缺點(diǎn)是制備困難。目前基于固相法的產(chǎn)業(yè)制備工藝還不成熟,尚未得到大規(guī)模應(yīng)用。如果LFP的液相制備技術(shù)獲得產(chǎn)業(yè)應(yīng)用[38-41],則該類材料的制備難題有望迎刃而解。
三元材料的發(fā)展歷程是從本世紀(jì)初開始的。上世紀(jì)90年代后期,隨著LCO的大規(guī)模應(yīng)用,受鈷資源的限制,人們希望用資源更為豐富的鎳來取代鈷。與LCO相比,LiNiO2材料(LNO)因資源豐富價(jià)格便宜,且具有更高的容量,曾被認(rèn)為最有希望的鋰離子電池材料[42-46]。但LNO作為正極材料,也存在制備困難、材料結(jié)構(gòu)不穩(wěn)定、電池循環(huán)性能差等較難解決的問題。
為了解決LNO的結(jié)構(gòu)穩(wěn)定性和熱穩(wěn)定性的問題,人們將鈷和錳摻雜進(jìn)LNO的體相,最早的鎳鈷錳三元材料NCM應(yīng)運(yùn)而生[47,48]。為了提升材料的振實(shí)密度,2005年作者所在課題組提出利用控制結(jié)晶技術(shù)制備高密度球形氫氧化鎳鈷錳前驅(qū)體,再與鋰源一起混合燒結(jié)制備NCM333[11]。并在此基礎(chǔ)上進(jìn)一步通過表面包覆、晶格摻雜、表面梯度化等技術(shù)提升材料性能[49-58]。
層狀三元材料LiNi1/3Mn1/3Co1/3O2(NMC333)在所有由Ni、Co、Mn過渡金屬元素組成的層狀氧化物正極材料中綜合性能最好,是目前乘用車動(dòng)力電池的主要正極材料。NMC333在充電到4.5V時(shí)比容量也很高。其主要缺點(diǎn)是鈷含量高,存在資源和成本的問題。
為了降低成本、提高容量,在NMC333的基礎(chǔ)上,人們不斷把鎳含量提高,研發(fā)出了一系列不同鎳含量的層狀三元材料。NMC442是由NMC333向NMC532和NMC622發(fā)展的過渡性產(chǎn)品,由于其綜合性能不如NMC333、NMC532和NMC622,生產(chǎn)及應(yīng)用的規(guī)模比較有限。NMC532是當(dāng)前應(yīng)用較為廣泛的三元材料之一。由于三元過渡金屬中鎳比例低于等于50%時(shí),材料的燒結(jié)氣氛是空氣,生產(chǎn)成本相對(duì)較低;而鎳比例高于等于60%時(shí),燒結(jié)氣氛需要氧氣或者氧氣/空氣混合氣體,生產(chǎn)成本相對(duì)較高。因此在空氣氣氛燒結(jié)的三元系列正極材料中,NMC532是鎳含量最高的,容量也最高,性價(jià)比好,目前有一定的市場(chǎng)份額。NMC622是一款綜合性能很好的正極材料,缺點(diǎn)是制備較難。隨著其制備工藝的日趨成熟,NMC622在乘用車動(dòng)力電池中的應(yīng)用比例穩(wěn)步上升,也是當(dāng)前應(yīng)用較為廣泛的三元材料之一。
NMC721的綜合性能不如NMC811和NMC622,是三元材料由NMC622向NMC811發(fā)展過程中的過渡產(chǎn)品,沒有得到很大的發(fā)展。NMC811和NCA,這兩種材料的主要優(yōu)點(diǎn)是比容量高,同時(shí)鎳資源比鈷豐富、成本比鈷低,原料資源受限的問題相對(duì)較小。缺點(diǎn)是材料制備難度大,對(duì)水份非常敏感,電池制備的條件和技術(shù)門檻高。NCA目前已經(jīng)開始規(guī)模應(yīng)用在電動(dòng)車產(chǎn)業(yè)中,而NMC811則被公認(rèn)為是比能量超過300Wh/kg鋰離子電池的主要選擇之一。
上述材料的各項(xiàng)性能指標(biāo)均能夠滿足車用鋰離子電池對(duì)正極材料的性能要求和電池制造技術(shù)工藝對(duì)材料加工性能的基礎(chǔ)要求,是目前已經(jīng)或者有望得到產(chǎn)業(yè)應(yīng)用的主要的鋰離子電池正極材料。
2. 制備高性能正極材料的要求
隨著人們對(duì)材料物理化學(xué)研究的不斷深入和材料制備技術(shù)的不斷發(fā)展,人們發(fā)現(xiàn),高性能的正極材料需要從材料的晶胞結(jié)構(gòu)、一次顆粒晶體結(jié)構(gòu)、二次顆粒結(jié)構(gòu)、材料表面化學(xué)四個(gè)方面進(jìn)行剪裁,以及材料大規(guī)模生產(chǎn)工藝技術(shù)方面進(jìn)行工藝過程優(yōu)化,才可以使得材料表現(xiàn)出更為優(yōu)異的性能,更好地滿足鋰離子電池產(chǎn)業(yè)對(duì)正極材料的各項(xiàng)要求。
清華大學(xué)核能與新能源技術(shù)研究院鋰離子電池實(shí)驗(yàn)室從上個(gè)世紀(jì)的九十年代初開始了二次電池高性能電極材料的研發(fā)。在高活性、高密度球形氫氧化亞鎳Ni(OH)2鎳氫電池用正極材料及其制備技術(shù)的研發(fā)過程中,形成了以控制結(jié)晶為特色的電極材料制備新技術(shù)工藝[59-71]。該技術(shù)工藝容易實(shí)現(xiàn)對(duì)晶胞結(jié)構(gòu)、一次顆粒晶體結(jié)構(gòu)、二次顆粒結(jié)構(gòu)以及材料表面化學(xué)四個(gè)層面的結(jié)構(gòu)調(diào)控,優(yōu)化正極材料的各項(xiàng)性能以滿足電極及電池對(duì)正極材料的要求。上述四個(gè)層面對(duì)材料性能的貢獻(xiàn)是不同的:
第一層面,晶胞結(jié)構(gòu),即組成晶體的基本單元晶胞結(jié)構(gòu),主要通過摻雜而實(shí)現(xiàn)調(diào)控,達(dá)到優(yōu)化材料的能級(jí)結(jié)構(gòu)/離子傳輸通道的目的,從而提升材料電子電導(dǎo)率/離子電導(dǎo)率或者結(jié)構(gòu)穩(wěn)定性,進(jìn)而提升材料的倍率性能和循環(huán)性能等。
第二層面,一次顆粒的晶體形貌。通過控制合成條件改變晶體的優(yōu)勢(shì)生長(zhǎng)方向、晶粒大小、晶粒堆積方式。這一層面的優(yōu)化可以優(yōu)化電化學(xué)活性/惰性界面的面積、應(yīng)力釋放路徑、鋰離子擴(kuò)散路徑,從而提升電池的倍率性能、循環(huán)穩(wěn)定性和能量密度等。
第三層面,二次顆粒結(jié)構(gòu)。二次顆粒是一次顆粒相互融合堆積形成的顆粒�?梢酝ㄟ^合成條件改變一次顆粒的堆積密度、二次顆粒的形貌、二次顆粒的大小及分布。這一層面的優(yōu)化可以獲得最佳的材料加工性能、極片壓實(shí)密度,顆粒力學(xué)強(qiáng)度,從而提升電池的能量密度等。
第四層面,材料的表面化學(xué)。主要指表面包覆和表面元素濃度的梯度化。材料表面化學(xué)的優(yōu)化可以大幅度提升材料的性能。
在實(shí)踐中,上述四個(gè)層面相互關(guān)聯(lián)、互相影響。例如,很好的形貌控制非常有利于表面化學(xué)的改進(jìn)。
本實(shí)驗(yàn)室在上世紀(jì)九十年代對(duì)鎳氫電池正極材料球形氫氧化亞鎳進(jìn)行系統(tǒng)研發(fā)時(shí)所形成的學(xué)術(shù)成果[59-69],為隨后研發(fā)高性能鋰離子電池電極材料奠定了堅(jiān)實(shí)的理論和實(shí)踐基礎(chǔ),開創(chuàng)了嶄新的研究領(lǐng)域[11,70,71]。
在電動(dòng)車和儲(chǔ)能領(lǐng)域,要求電池具有很好的一致性和可靠性。據(jù)此,對(duì)正極材料規(guī)�;a(chǎn)的穩(wěn)定性提出了新的要求,正極材料產(chǎn)業(yè)迫切需求先進(jìn)的材料規(guī)模制備技術(shù)[72]。
3. 控制結(jié)晶/固相反應(yīng)工藝制備高性能正極材料
2006年以前,已經(jīng)實(shí)現(xiàn)大規(guī)模生產(chǎn)的鋰離子電池正極材料只有鈷酸鋰LiCoO2和錳酸鋰LiMn2O4,采用成熟的陶瓷工業(yè)合成技術(shù)--高溫固相法, 基本工藝是將反應(yīng)物混合后進(jìn)行燒結(jié)。該技術(shù)工藝的優(yōu)勢(shì)是設(shè)備成熟、技術(shù)工藝簡(jiǎn)單,最大缺點(diǎn)是產(chǎn)物的粒徑分布不易控制, 均勻性、一致性和重現(xiàn)性較差[73]。
本實(shí)驗(yàn)室基于高密度球形氫氧化亞鎳的技術(shù)成果,從上世紀(jì)90年代末期開始,研發(fā)了獨(dú)特的控制結(jié)晶/固相反應(yīng)新工藝[8-11,70,71], 該新工藝以控制結(jié)晶制備前驅(qū)體為技術(shù)核心,從四個(gè)層面對(duì)材料結(jié)構(gòu)其性能進(jìn)行優(yōu)化。由于該工藝技術(shù)所制備材料具有球形或類球形形貌、堆積密度高,加工性能好、可提高電池的能量密度,顯示了優(yōu)異的綜合性能,控制結(jié)晶/固相反應(yīng)工藝為今天產(chǎn)業(yè)界所普遍接受。
1999年,本實(shí)驗(yàn)室首次報(bào)道了以Co(OH)2為前驅(qū)體制備球形LiCoO2正極材料 [8]。由于Co(OH)2和LiCoO2的結(jié)構(gòu)相似,因此固相反應(yīng)的溫度低、燒結(jié)時(shí)間短,可獲得均勻無雜相的NaFeO2層狀結(jié)構(gòu)的LiCoO2粉末。同時(shí),可以借鑒優(yōu)化Ni(OH)2的工藝技術(shù)來優(yōu)化Co(OH)2前驅(qū)體,從而得到流動(dòng)性好、分散性好、堆積密度高的LiCoO2粉體。隨后,這些學(xué)術(shù)思想被用來制備一系列的正極材料,逐步發(fā)展成為今天的鋰電池正極材料的主要生產(chǎn)工藝路線,即控制結(jié)晶/固相反應(yīng)工藝。
2001年,本實(shí)驗(yàn)室首次發(fā)表了以球形Ni0.8Co0.2(OH)2為前驅(qū)體制備高鎳正極材料LiNi0.8Co0.2O2的文章,同時(shí)進(jìn)行表面改性和Al摻雜改性。Al摻雜演變成為今天的NCA材料。
2003年,本實(shí)驗(yàn)室首次發(fā)表以控制結(jié)晶技術(shù)制備尖晶石錳酸鋰的工藝技術(shù),繼而首次提出通過表面富鈷的“梯度材料”來改善尖晶石錳酸鋰的高溫循環(huán)穩(wěn)定性,并基于控制結(jié)晶技術(shù)對(duì)尖晶石錳酸鋰進(jìn)行了進(jìn)一步的改性研究。這些研究表明,控制結(jié)晶技術(shù)不僅在均質(zhì)材料制備方面具有較好的可控性,在材料表面包覆、特別是梯度包覆方面也具有工藝簡(jiǎn)單、易于控制的優(yōu)點(diǎn)。
磷酸鐵鋰因?yàn)楸菊麟娮雍碗x子電導(dǎo)率較低,只有納米化后才能獲得可用的電化學(xué)性能,但納米顆粒堆積和壓實(shí)密度低,這嚴(yán)重影響了磷酸鐵鋰電池的能量密度。2005年,本實(shí)驗(yàn)室提出以控制結(jié)晶技術(shù)制備球形FePO4前驅(qū)體,然后混合鋰源和碳源,通過碳熱還原合成高性能高密度LiFePO4的合成路線。
其中液相法可以很好的控制前驅(qū)體的Fe:P比例,可同時(shí)實(shí)現(xiàn)納米一次顆粒和高密度球性二次顆粒的調(diào)控,并同步實(shí)現(xiàn)導(dǎo)電碳在二次顆粒中的均勻復(fù)合,雖然仍然通過固相燒結(jié)獲得最終的磷酸鐵鋰產(chǎn)品,但均勻、高密度、批次穩(wěn)定、粒度可控、組成精確可控的前驅(qū)體使得磷酸鐵鋰正極材料的均勻性和批次穩(wěn)定性大大提高、雜質(zhì)含量顯著降低。上述學(xué)術(shù)思想逐漸被產(chǎn)業(yè)界認(rèn)可,成為了今天大規(guī)模生產(chǎn)LFP的基本工藝路線。
2005年開始,本實(shí)驗(yàn)室報(bào)道了采用控制結(jié)晶/固相反應(yīng)技術(shù)制備高性能NMC333正極材料。并進(jìn)一步對(duì)NMC333正極材料進(jìn)行了包覆、摻雜等的改性研究。
目前動(dòng)力鋰離子電池產(chǎn)業(yè)所需要的主流正極材料均采用控制結(jié)晶/固相反應(yīng)工藝進(jìn)行生產(chǎn)。尤其是大規(guī)模儲(chǔ)能及電動(dòng)車電池用的磷酸鐵鋰材料和各種組成的三元材料的合成,控制結(jié)晶/固相反應(yīng)工藝具有不可替代的優(yōu)越性。其可根據(jù)不同電池的需求,針對(duì)性地對(duì)前驅(qū)體進(jìn)行改性與調(diào)控。同時(shí)產(chǎn)品也容易實(shí)現(xiàn)良好的均勻性和一致性,這一點(diǎn)對(duì)動(dòng)力電池的穩(wěn)定生產(chǎn)、尤其是動(dòng)力電池的一致性至關(guān)重要。
控制結(jié)晶/固相反應(yīng)技術(shù)經(jīng)過十多年的發(fā)展,目前已經(jīng)成為了國際上正極材料行業(yè)的主流生產(chǎn)技術(shù)工藝。這是我國科學(xué)工作者對(duì)鋰離子電池產(chǎn)業(yè)做出的重要貢獻(xiàn)。
4. 鋰離子電池材料的規(guī)模化生產(chǎn)技術(shù)
隨著大規(guī)模儲(chǔ)能和電動(dòng)車的快速發(fā)展,對(duì)鋰離子電池正極材料的產(chǎn)品質(zhì)量提出了越來越嚴(yán)格的要求。為滿足市場(chǎng)對(duì)正極材料的高品質(zhì)要求,自動(dòng)化、智能化的大規(guī)模生產(chǎn)技術(shù)和裝備技術(shù)就顯得越來越重要。
在過去的十五年里,控制結(jié)晶/固相反應(yīng)技術(shù)工藝日臻完善。然而,我國還是一個(gè)發(fā)展中國家,大量設(shè)備陳舊、生產(chǎn)工藝僵化的現(xiàn)象普遍存在,尤其是中小企業(yè)。國家整體工業(yè)化的水平還處在工業(yè)2.0和工業(yè)3.0的階段,距發(fā)達(dá)國家的工業(yè)4.0的信息化、智能化的工業(yè)生產(chǎn)技術(shù)水平還有一段距離,這已成為阻礙我國制造業(yè)效率和品質(zhì)進(jìn)一步提升的主要問題。這個(gè)現(xiàn)象也同樣存在于鋰離子電池正極材料生產(chǎn)企業(yè)中。因此我國鋰離子電池正極材料的生產(chǎn)工藝、設(shè)備管理水平急需轉(zhuǎn)型升級(jí),利用信息技術(shù)提升、改善、重構(gòu)生產(chǎn)要素,提高企業(yè)組織管理水平,創(chuàng)新生產(chǎn)方式,提升資產(chǎn)質(zhì)量和服務(wù)功能,適應(yīng)市場(chǎng)的迅速發(fā)展和變化。
2000年左右,鋰離子電池正極材料的新建項(xiàng)目一般是200-500噸的產(chǎn)能規(guī)模。2010年左右,一般是2000噸的產(chǎn)能規(guī)模。目前新建項(xiàng)目一般是一期5000—2000噸,規(guī)劃50000噸以上。隨著產(chǎn)能規(guī)模的不斷放大,對(duì)工廠的設(shè)計(jì)布局和運(yùn)行管理提出了新的挑戰(zhàn)。為了滿足電動(dòng)車和儲(chǔ)能產(chǎn)業(yè)對(duì)電極材料的高品質(zhì)和大規(guī)模的需求,逐步發(fā)展了基于粉體自動(dòng)輸送的信息化、自動(dòng)化和智能化的大規(guī)模生產(chǎn)技術(shù)[72]。
目前國內(nèi)部分企業(yè)已經(jīng)開始逐步采用先進(jìn)的大規(guī)模生產(chǎn)技術(shù)。主要包括粉體自動(dòng)輸送、自動(dòng)計(jì)量、自動(dòng)化生產(chǎn)與智能控制,信息化遠(yuǎn)程實(shí)時(shí)監(jiān)控,以及先進(jìn)的制造執(zhí)行系統(tǒng)等。
以控制結(jié)晶制備磷酸鐵前驅(qū)體/碳熱還原固相反應(yīng)為基礎(chǔ)的磷酸鐵鋰制備工藝已經(jīng)被產(chǎn)業(yè)逐步接受,并成為目前的主流工藝路線。下一步溶劑熱方法制備高性能磷酸鐵鋰有可能成為新的超大規(guī)模生產(chǎn)方法,以滿足未來大規(guī)模固定儲(chǔ)能的需求。
在三元材料中,NMC333的綜合性能最好,NMC532的性價(jià)比較好,NMC811/NCA在4.2V的比容量最高。因此,這些材料在一定時(shí)期內(nèi),將得到較大的發(fā)展,以滿足未來大規(guī)模移動(dòng)儲(chǔ)能(例如電動(dòng)車)的需求。
鋰離子電池正極材料的生產(chǎn)技術(shù)經(jīng)歷來二十多年的發(fā)展,其主流工藝逐步集中在以控制結(jié)晶/固相反應(yīng)工藝為基礎(chǔ)的技術(shù)路線。該技術(shù)路線以控制結(jié)晶制備前驅(qū)體為技術(shù)核心,可以在材料的四個(gè)層面對(duì)其性能進(jìn)行優(yōu)化。該技術(shù)路線所制備材料具有顆粒形貌易控制,均勻性、一致性和重現(xiàn)性好的特點(diǎn)。且材料的堆積密度高,可提高電池的能量密度。由于該技術(shù)路線所制備材料具有相對(duì)最好的綜合性能,因此控制結(jié)晶/固相反應(yīng)技術(shù)路線為今天產(chǎn)業(yè)界所普遍接受。
為了滿足電動(dòng)車和儲(chǔ)能產(chǎn)業(yè)對(duì)電極材料的高品質(zhì)和大規(guī)模的需求,基于工業(yè)4.0的概念,我國已經(jīng)發(fā)展了包括粉體自動(dòng)輸送的信息化、自動(dòng)化和智能化的大規(guī)模生產(chǎn)技術(shù)。
固定儲(chǔ)能和移動(dòng)儲(chǔ)能產(chǎn)業(yè)的快速發(fā)展,拉動(dòng)了鋰離子電池正極材料的技術(shù)進(jìn)步。在正極材料制備技術(shù)的發(fā)展過程中,以前側(cè)重單元技術(shù)工藝的研發(fā),主要通過材料的結(jié)構(gòu)調(diào)控來優(yōu)化材料加工性能和電化學(xué)性能。而未來的大規(guī)模智能制造,一方面仍然需要關(guān)注單元技術(shù)工藝的可規(guī)模性,更需要關(guān)注單元技術(shù)工藝之間的反饋與聯(lián)動(dòng)效率,從而提高大規(guī)模制造過程的能效,提高產(chǎn)品穩(wěn)定性。
在這一技術(shù)發(fā)展的早期階段,我國科研工作者做出了不可或缺的創(chuàng)新性貢獻(xiàn)。目前我國已經(jīng)成為鋰離子電池正極材料的最大生產(chǎn)國,占比超過50%。研發(fā)力量規(guī)模也是全球最大,我們相信在未來的大規(guī)模智能制造階段,我國科學(xué)工作者在新工藝、新設(shè)備、智能化等方面也將做出重要貢獻(xiàn)。
(責(zé)任編輯:子蕊)